博客
关于我
数据应用apply练习
阅读量:743 次
发布时间:2019-03-22

本文共 941 字,大约阅读时间需要 3 分钟。

数据应用相对练习

以下是基于Numpy和Pandas的数据操作演练步骤:

1. 创建包含3行5列的DataFrame对象,数值范围在1-8之间

首先,我们在环境中导入必要的库:

import numpy as np  import pandas as pd

接下来,创建一个3行5列的随机整数数据并生成DataFrame:

df1 = pd.DataFrame(np.random.randint(1, 8, (3,5)))

这将生成如下数据表:

0 1 2 3 4
2 1 5 2 5
2 6 4 2 5
2 7 1 5 6

2. 按照列表'a','b','a'进行行分组

根据指定的列表进行分组:

df1_1 = df1.groupby(['a', 'b', 'a'])

执行后,结果将被划分为以下分组:

('a', 0, 1, 2, 3, 4)

('a', 1, 2, 3, 4)
('a', 2, 1, 2, 3, 4)

3. 为每个元素加1

对数据框中的每个元素执行加1操作:

df1_1 = df1_1.apply(lambda x: x + 1)

此次操作后的结果如下:

0 1 2 3 4
3 2 6 3 6
3 7 5 3 7
3 8 2 4 8

4. 将每个元素加上其所在列的和

首先计算 DataFrame 的总和:

sum_columns = df1.sum()   # 列的总和

结果:

0: 61
1:142
2:103
3:94
4:16

然后对每个元素加上对应列的和:

df1_1 = df1_1.apply(lambda x: x + df1.sum())

最终表格为:

0 1 2 3 4
8 (2+62) 15 (2+13) 15 (2+13) 8 (+previous sum) 21 (+previous sum)
8 (2+62) 20 (3+17) 14 (3+11) 8 (+previous sum) 21 (+previous sum)
8 (2+62) 21 (4+17) 11 (4+7 8 (+previous sum) 22 (+previous sum)

请注意,这些数值用于展示操作过程,具体应用时请根据实际数据调整。

转载地址:http://nutwk.baihongyu.com/

你可能感兴趣的文章
MySQL数据和Redis缓存一致性方案详解
查看>>
MySQL数据和Redis缓存一致性方案详解
查看>>
Mysql数据库 InnoDB存储引擎中Master Thread的执行流程
查看>>
MySQL数据库 范式
查看>>
Mysql数据库B-Tree索引
查看>>
mysql数据库io空闲_mysql数据库磁盘io高的排查
查看>>
mysql数据库root密码忘记,查看或修改的解决方法
查看>>
MySQL数据库SQL注入靶场sqli通关实战(附靶场安装包)
查看>>
MYSQL数据库下载安装(Windows版本)
查看>>
MySQL数据库与Informix:能否创建同名表?
查看>>
mysql数据库中的数据如何加密呢?mysql8.0自带新特性
查看>>
MySQL数据库优化
查看>>
MySQL数据库优化总结
查看>>
MySQL数据库入门看这一篇文章就够了
查看>>
Mysql数据库函数contac_函数:函数删除操作语法&使用例——《mysql 从入门到内卷再到入土》...
查看>>
mysql数据库命令备份还原
查看>>
mysql数据库基础教程
查看>>
MySQL数据库备份
查看>>
mysql数据库备份与恢复
查看>>
MySQL数据库备份实战
查看>>