博客
关于我
数据应用apply练习
阅读量:743 次
发布时间:2019-03-22

本文共 941 字,大约阅读时间需要 3 分钟。

数据应用相对练习

以下是基于Numpy和Pandas的数据操作演练步骤:

1. 创建包含3行5列的DataFrame对象,数值范围在1-8之间

首先,我们在环境中导入必要的库:

import numpy as np  import pandas as pd

接下来,创建一个3行5列的随机整数数据并生成DataFrame:

df1 = pd.DataFrame(np.random.randint(1, 8, (3,5)))

这将生成如下数据表:

0 1 2 3 4
2 1 5 2 5
2 6 4 2 5
2 7 1 5 6

2. 按照列表'a','b','a'进行行分组

根据指定的列表进行分组:

df1_1 = df1.groupby(['a', 'b', 'a'])

执行后,结果将被划分为以下分组:

('a', 0, 1, 2, 3, 4)

('a', 1, 2, 3, 4)
('a', 2, 1, 2, 3, 4)

3. 为每个元素加1

对数据框中的每个元素执行加1操作:

df1_1 = df1_1.apply(lambda x: x + 1)

此次操作后的结果如下:

0 1 2 3 4
3 2 6 3 6
3 7 5 3 7
3 8 2 4 8

4. 将每个元素加上其所在列的和

首先计算 DataFrame 的总和:

sum_columns = df1.sum()   # 列的总和

结果:

0: 61
1:142
2:103
3:94
4:16

然后对每个元素加上对应列的和:

df1_1 = df1_1.apply(lambda x: x + df1.sum())

最终表格为:

0 1 2 3 4
8 (2+62) 15 (2+13) 15 (2+13) 8 (+previous sum) 21 (+previous sum)
8 (2+62) 20 (3+17) 14 (3+11) 8 (+previous sum) 21 (+previous sum)
8 (2+62) 21 (4+17) 11 (4+7 8 (+previous sum) 22 (+previous sum)

请注意,这些数值用于展示操作过程,具体应用时请根据实际数据调整。

转载地址:http://nutwk.baihongyu.com/

你可能感兴趣的文章
mysql备份工具xtrabackup
查看>>
mysql备份恢复出错_尝试备份/恢复mysql数据库时出错
查看>>
mysql复制内容到一张新表
查看>>
mysql复制表结构和数据
查看>>
mysql复杂查询,优质题目
查看>>
MySQL外键约束
查看>>
MySQL多表关联on和where速度对比实测谁更快
查看>>
MySQL多表左右连接查询
查看>>
mysql大批量删除(修改)The total number of locks exceeds the lock table size 错误的解决办法
查看>>
mysql如何做到存在就更新不存就插入_MySQL 索引及优化实战(二)
查看>>
mysql如何删除数据表,被关联的数据表如何删除呢
查看>>
MySQL如何实现ACID ?
查看>>
mysql如何记录数据库响应时间
查看>>
MySQL子查询
查看>>
Mysql字段、索引操作
查看>>
mysql字段的细节(查询自定义的字段[意义-行列转置];UNION ALL;case-when)
查看>>
mysql字段类型不一致导致的索引失效
查看>>
mysql字段类型介绍
查看>>
mysql字段解析逗号分割_MySQL逗号分割字段的行列转换技巧
查看>>
MySQL字符集与排序规则
查看>>